
1(a). This question is about the analysis of organic compounds.

A student investigates the alkaline hydrolysis of 1-bromopropane as outlined below.

- Step 1 The student adds 1-bromopropane to an excess of aqueous potassium hydroxide, KOH(aq), in a pear-shaped flask.
- **Step 2** A TLC chromatogram is run using propan-1-ol and the reaction mixture.
- The reaction mixture is refluxed.
- Step 3 A TLC chromatogram of the reaction mixture is run every 10 minutes.

The TLC chromatograms are shown below

i. Determine the R_f value of propan-1-ol.

Show your working.

*R*_f =[1]

Write an equation for the alkaline hydrolysis of 1-bromopropane.			
Show structures of organic compounds.			
[1]			
A student investigates the alkaline hydrolysis of 1-chloropropane using the same method as for 1-bromopropane.			
Predict, with reasons, how the appearance of the reaction mixture in the chromatogram produced after 20 minutes would be different when 1-chloropropane is used instead of 1-bromopropane.			
Suggest why propan-1-ol is run alongside the reaction mixture.			

_____[3]

(b). Compounds F, G, H and I are structural isomers.

A student carries out test-tube tests on the compounds. The student records the observations after carrying out each test. These are shown in **Table 5.1**.

In **Table 5.1**, 2,4-dintrophenylhydrazine has been abbreviated to 2,4-DNP.

Table 5.1

	Test			
Compound	2,4-DNP	Acidified dichromate(VI) reflux	Bromine water	Tollens' reagent
F	Orange solution	Green solution	Colourless solution	Colourless solution
G	Orange solution	Green solution	Orange solution	Colourless solution
Н	Orange precipitate	Orange solution	Orange solution	Colourless solution
I	Orange precipitate	Green solution	Orange solution	Silver mirror

i. Write the formula of the species causing the colours after refluxing with acidified dichromate(VI).
Green solution
Orange solution [2]
ii. The student is provided with further information about compounds F−I .
 They all have the molecular formula C₅H₁₀O. One of the compounds is alicyclic. The other compounds are unbranched. Use this further information and the student's observations in Table 5.1 to answer the following.
 How do the observations provide evidence for the possible functional groups in compounds F-I? Suggest a possible structure for each of the compounds F-I. Show your reasoning.
Extra answer space if required.

2. Oil of wintergreen is a liquid used in medicine to relieve muscle pain.

Compound **H** is a component in oil of wintergreen and can be synthesised from compound **G**, as shown below. The boiling point and density of compound **H** are stated.

A student prepares a sample of compound **H** by the method below.

- Step 1 Reflux 8.97 g of compound **G** for 30 minutes with an excess of methanol in the presence of a small amount of sulfuric acid as a catalyst.
- **Step 2** Add an excess of aqueous sodium carbonate, Na₂CO₃(aq). Two layers are obtained.
- **Step 3** Purify the impure compound **H** that forms from the resulting mixture.

The student follows this method and obtains 5.32 g of pure compound **H**.

i. In Step 2, Na₂CO₃(aq) removes the sulfuric acid catalyst **and** any unreacted compound **G** from the mixture.

Write equations for this removal.

Removal of sulfuric acid

Removal of unreacted compound G

ii.	Another student suggests that adding aqueous sodium hydroxide would be more effective in removing the sulfuric acid catalyst than $Na_2CO_3(aq)$.

Comment on whether the student's suggestion is an improvement for the preparation of compound **H**.

3. A student investigates the rate of hydrolysis of different iodoalkanes using aqueous silver nitrate in ethanol.

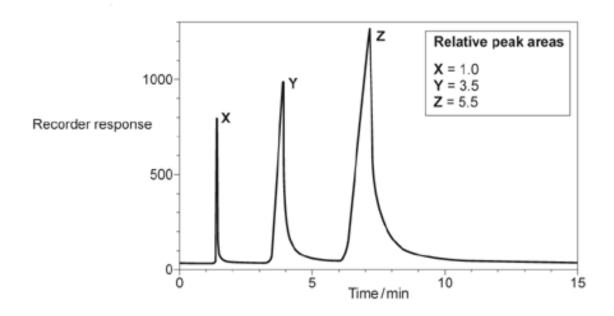
What colour of precipitate is seen?

- **A** Brown
- **B** Cream
- **C** White
- D Yellow

Your answer [1]

4. Geraniol, shown below, is a component in many natural oils.

Which pair of reagents identifies both functional groups in geraniol?


- A Acidified dichromate(VI) and 2,4-dinitrophenylhydrazine.
- **B** Bromine water and 2,4-dinitrophenylhydrazine.
- **C** Bromine water and acidified dichromate(VI).
- **D** Tollens' reagent and aqueous silver nitrate in ethanol.

Your answer [1]

5. A sample containing a mixture of 3 components, **X**, **Y** and **Z**, is analysed using gas chromatography.

The gas chromatogram below is obtained.

The relative peak areas of **X**, **Y** and **Z** are included.

Which statement(s) is/are true?

- 1 The peak for component **X** shows the mass of one mole.
- 2 Component Y stays in the column for longer than component X.
- 3 Component **Z** consists of more than half of the sample.
- **A** 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- **D** Only 1

Your answer

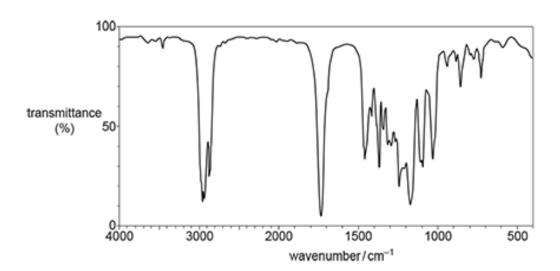
[1]

6. An unknown organic compound is analysed.

The results are shown below.

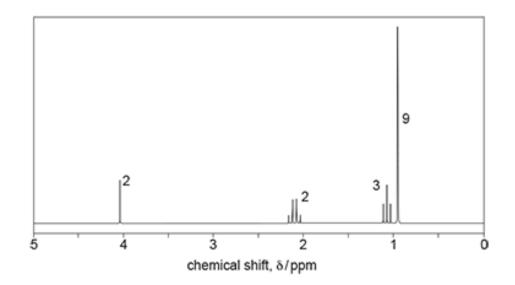
Addition of 2,4-DNP

No visible change


Elemental analysis by mass

C, 66.63%; H, 11.18%; O, 22.19%

Mass spectrum


Molecular ion peak at m/z = 144.0

IR spectrum

Proton NMR spectrum

The numbers by each peak are the relative peak areas.

Use th	ne information to identify the orga	anic compound.		
Show	all your reasoning.			
				[6]
7. Thi	s question is about the chemistry			-
Comp	oounds J , K and L , shown below,	are structural isomers.		
	CH ₂ CH ₂ O	н СН3	н₃с—Он	
	Compound J	CH ₃ Compound K	CH ₃ Compound L	
i.	What chemical test(s) could be	used to confirm the preser	ce of the phenol group in compound	s K and L ?
				[4]

		L.				
	Explain, with reasoning, whether the student is correct.					
		_				
		_				
		_				
		_				
	Compound J is substituted at the 2- and 4- positions by chlorine in the presence of a catalyst.					
	Outline the mechanism for the 4 substitution of compound ${\bf J}$ by chlorine in the presence of a catalyst.					
	Show the role of the catalyst.					

[4]